
 

 

ARIS 

REPOSITORY API 
TECHNICAL INTRODUCTION 

NOVEMBER 2023 

VERSION 10.0 - SERVICE RELEASE 24 AND HIGHER 
 



 

 

 

This document applies to ARIS Version 10.0 and to all subsequent releases. 

Specifications contained herein are subject to change and these changes will be reported in 
subsequent release notes or new editions. 

Copyright © 2010 - 2023 Software AG, Darmstadt, Germany and/or Software AG USA Inc., 
Reston, VA, USA, and/or its subsidiaries and/or its affiliates and/or their licensors. 

The name Software AG and all Software AG product names are either trademarks or 
registered trademarks of Software AG and/or Software AG USA Inc. and/or its subsidiaries 
and/or its affiliates and/or their licensors. Other company and product names mentioned 
herein may be trademarks of their respective owners. 

Detailed information on trademarks and patents owned by Software AG and/or its 
subsidiaries is located at https://softwareag.com/licenses. 

Use of this software is subject to adherence to Software AG's licensing conditions and terms. 
These terms are part of the product documentation, located at 
https://softwareag.com/licenses and/or in the root installation directory of the licensed 
product(s). 

This software may include portions of third-party products. For third-party copyright notices, 
license terms, additional rights or restrictions, please refer to "License Texts, Copyright 
Notices and Disclaimers of Third Party Products". For certain specific third-party license 
restrictions, please refer to section E of the Legal Notices available under "License Terms and 
Conditions for Use of Software AG Products / Copyright and Trademark Notices of Software 
AG Products". These documents are part of the product documentation, located at 
https://softwareag.com/licenses and/or in the root installation directory of the licensed 
product(s). 



REPOSITORY API TECHNICAL INTRODUCTION 

 

I 

 

Contents 

Contents ........................................................................................................................................................... I 

1 Introduction ............................................................................................................................................. 1 

2 General principles .................................................................................................................................. 2 

3 Login/Logout .......................................................................................................................................... 3 
3.1 Obtaining a UMC session token ............................................................................................. 3 
3.2 Releasing a UMC session token ............................................................................................. 5 

4 Get information about ARIS Method ................................................................................................. 6 

5 Get information on available databases ........................................................................................... 8 

6 API Docs ComparePair ........................................................................................................................ 10 
6.1 Get a list of database comparison pairs ............................................................................ 10 
6.2 Create a database comparison pair .................................................................................... 12 
6.3 Toggle the enable state of a database comparison pair ................................................ 14 
6.4 Delete a database comparison pair .................................................................................... 15 

7 Get an item ............................................................................................................................................. 17 

8 Get group children ............................................................................................................................... 19 

9 Get content of a model ....................................................................................................................... 20 

10 Create an item ...................................................................................................................................... 22 

11 Create model content ......................................................................................................................... 24 

12 Delete model content ......................................................................................................................... 26 

13 Move an item......................................................................................................................................... 27 

14 Attributes .............................................................................................................................................. 28 
14.1 Retrieval .................................................................................................................................... 29 
14.2 Creation ..................................................................................................................................... 30 
14.3 Updating or creation for existing item ............................................................................... 31 
14.4 Deleting an attribute .............................................................................................................. 32 
14.5 Styled values for text attributes ......................................................................................... 33 

15 Assignments ......................................................................................................................................... 35 

16 Model graphic ....................................................................................................................................... 36 

17 Finding items in the database .......................................................................................................... 37 

18 Paging ................................................................................................................................................... 40 

19 Ordering the result .............................................................................................................................. 42 

20 Generic queries .................................................................................................................................... 43 
20.1 Use case: Get connected objects (def level) .................................................................... 46 
20.2 Use case: Get connected objects (occ level) .................................................................... 46 



REPOSITORY API TECHNICAL INTRODUCTION 

 

II 

 

20.3 Use case: Get models with occurrences of an object ................................................... 48 
20.4 Use case: Get objects to which a model is assigned ...................................................... 49 
20.5 Use Case: Get models with occurrence pattern .............................................................. 50 
20.6 Use Case: Get models with occurrence pattern .............................................................. 51 

21 Legal information ................................................................................................................................. 52 
21.1 Documentation scope............................................................................................................ 52 
21.2 Support ..................................................................................................................................... 53 

  



REPOSITORY API TECHNICAL INTRODUCTION 

 

1 

 

1 Introduction 

This document provides additional information for accessing an ARIS repository via the ARIS 

REST API. It should be considered as a supplement to the official API documentation available 

on every running ARIS Server and ARIS Design Server under 

http://<servername:port>/apidocs. If you do not specify a port number and use 

http://<servername>/apidocs instead, the default port is used, for example, 80. 



REPOSITORY API TECHNICAL INTRODUCTION 

 

2 

 

2 General principles 

 The ARIS RESTful APIs are designed to access an ARIS repository by apps typically 

running on mobile devices. It is not meant as a replacement for other ways to access an 

ARIS repository, for example, the ARIS Report API. Therefore, it has various limitations 

with respect to functionality that you might have expected. 

 Every call to the API is atomic: either the operation succeeds or fails. 

 Every call to the API requires a valid API cookie/token from ARIS User Management. 

 Many calls have obligatory and/or optional URL parameters. All parameter values must be 

URL-encoded as they may contain special characters. 

 If URL parameters are passed that are unknown or not the correct ones for the specific 

method or misspelled, then they are silently ignored. This may lead to an unexpected 

outcome of the requested operation. 

 Many calls require a database language as parameter. If not given, the fallback language 

of the current database is used. 

 Many operations require an ARIS Method filter GUID as parameter. If not given, a specific 

auto-selection mechanism chooses the right filter, like to a login on the ARIS portal. It is 

strongly recommended to pass the desired filter as parameter which is also much faster. 

 The result objects may contain method data, for example, typename. Method data is 

delivered in the language from the client’s HTTP header ("accept-language"). 

Alternatively, you can pass an optional URL parameter methodlanguage in order to set 

the method language directly. 

 For read-requests, there is an absolute result size limit. The limit is typically 100,000 for 

object items and 10,000 for all other items. like models or groups (different limits may be 

applicable depending on the user license or server settings). 

 This means that the sum of all result items from all paging requests cannot exceed the 

absolute result size limit (page 40). 

 For write-requests, for example the creation of objects, the limit is 500 items per request 

 Date parameters must be provided and are returned in UTC in the RFC 3339 Internet 

format YYYY-MM-DD, and for timestamps in UTC in the RFC 3339 Internet Zulu time 

format is needed YYYY-MM-DD'T'HH:MM:SS'Z', for example, 2023-01-22T08:22:55Z. 



REPOSITORY API TECHNICAL INTRODUCTION 

 

3 

 

3 Login/Logout 

For all API calls, a valid token from ARIS User Management (also known as UMC) is required. 

The token must be obtained by calling a dedicated method from the UMC API. It is not allowed 

to use a standard UMC token obtained by logging in to the Connect portal. 

The token must be included in all subsequent API calls as URL parameter (umcsession) or 

added as cookie to the HTTP request. 

3.1 Obtaining a UMC session token 

The endpoint for obtaining the UMC token is: 

POST 

http(s)://<servername:port>/umc/api/v2/tokens 

 

Required URL parameters are: 

 tenant    

 name 

 password 

 

Basic authentication is also supported (see remarks below). 

 

EXAMPLE 

 

POST 

http://<servername:port>/umc/api/v2/tokens?tenant=default&name=system&pas
sword=manager 

 

Response: 

{ 
  "csrfToken": "kZcIkOV2xrD3u3M5bKy9NvzY_TriwE1KmC6k6huUWxQ", 
  "token"    : "eyJhbGciOiJIUzI1NisImp0aSI6FjY " 
} 

 

Remarks 
 All URL parameters must be urlencoded if they contain special characters like umlauts, 

non-ASCII, etc. 



REPOSITORY API TECHNICAL INTRODUCTION 

 

4 

 

 A successful invocation returns a UMC cookie in the HTTP session and in its JSON 

response body the UMC token as string. For subsequent API requests you can either 

provide the cookie and hand over the token as URL parameter umcsession (do not forget 

to urlencode the value). 

 The JSON response also contains a CSRF-token. This CSRF-token must be passed as URL 

parameter csrfToken (urlencoded!) in subsequent requests if the REST API is called from 

a web browser environment (i.e. if the user-agent provided by the client indicates a 

browser like Chrome or Mozilla). 

 As many subsequent API calls as desired can be carried out as long as the UMC maximum 

session duration limits are not exceeded. These limits can be viewed/edited in the User 

management of the ARIS Administration: 

 

 When no more API requests will be sent for some time it is strongly recommended to 

explicitly "logout" again in order to release the consumed ARIS license (see next chapter: 

Releasing a UMC session token (page 5)). 



REPOSITORY API TECHNICAL INTRODUCTION 

 

5 

 

 It is also possible to obtain the token with preemptive basic authentication. In this case, 

user name and password are not specified as parameters. Instead, the HTTP header must 

contain the entry Authorization: Basic xyz, where xyz is the BASE64 representation of 

the string name:password. 

3.2 Releasing a UMC session token 

When the UMC session is no longer required, it should be explicitly invalidated, thus releasing 

the consumed ARIS license. The endpoint to use is: 

 

DELETE https://<servername:port>/umc/api/tokens/<token> 

 

EXAMPLE 

 

DELETE 

http://<servername:port>/umc/api/tokens/eyJhbGciOiJIUzI1NisImp0aSI6FjY 



REPOSITORY API TECHNICAL INTRODUCTION 

 

6 

 

4 Get information about ARIS Method 

GET http://<servername:port>/abs/api/methodology/modeltypes 

This call returns a list with all available model types. 

 

GET http://<servername:port>/abs/api/methodology/objecttypes 

This call returns a list with all available object types. 

 

GET http://<servername:port>/abs/api/methodology/cxnbasetypes 

This call returns a list with all available connection base types. 

 

GET http://<servername:port>/abs/api/methodology/symboltypes 

This call returns a list with all available symbol types. 

 

GET http://<servername:port>/abs/api/methodology/attributetypes 

This call returns a list with all available attribute types. 

 

GET http://<servername:port>/abs/api/methodology/attributevaluetypes 

This call returns a list with all available attribute value types. 

 

The calls support four optional URL parameters: pagesize and pagetoken to control the 

paging (see Paging (page 40)), methodfilter to retrieve the types which are allowed in this 

filter, methodlanguage to specify the locale of the method types (see also General principles 

(page 2)). 

 

EXAMPLE WITH METHOD FILTER AND LANGUAGE 

GET 

http://<servername:port>/abs/api/methodology/modeltypes?methodfilter=8e386410-e0e0-

11de-242a-f28d40dfaca6&methodlanguage=en_US 

 

The result is a list with the method types. For each method type is returned the name, type 

number, API name and GUID. 

EXAMPLE FOR A MODEL TYPE 

{ 
      "kind": "METHODTYPE", 
      "name": "BPMN allocation diagram (BPMN 2.0)", 
      "type": 252, 



REPOSITORY API TECHNICAL INTRODUCTION 

 

7 

 

      "apiname": "MT_BPMN_ALLOCATION_DIAGRAM", 
      "type_guid": "" 
} 

EXAMPLE FOR AN OBJECT TYPE 

{ 
      "kind": "METHODTYPE", 
      "name": "Function", 
      "type": 22, 
      "apiname": "OT_FUNC", 
      "type_guid": "" 
} 



REPOSITORY API TECHNICAL INTRODUCTION 

 

8 

 

5 Get information on available databases 

GET 

http://<servername:port>/abs/api/databases?language=en&attributes=all 

 

This call returns a list of all available databases for the current user. It is the same list that a 

user would see when opening ARIS Architect. 

For each database, its name, main group GUID, and some interesting flags are returned. It is 

also possible to retrieve the maintained attributes by using the URL parameter attributes. 

You can find more about attributes in section Retrieval (page 29). 

 

EXAMPLE FOR DATABASE ITEM 

{ 
"kind": "DATABASE", 
"name": "United Motor Group", 
"isversioned": true, 
"maingroup_guid": "4a713de0-5d02-11e3-0fda-fd81e986d7e2" 
} 

Note: A license of type ARIS API Full Access, ARIS API System Access, ARIS API Read 

Access or a sufficient ARIS product license is required for this operation. 

 

GET 

http://<servername:port>/abs/api/databases/United%20Motor%20Group?languag
e=en&attributes=all 

 

This call returns more detailed information for the given database name: main-group GUID, 

isversioned flag and ispublished flag, all maintained attributes in database language EN as 

well as a list of all allowed method filters and database languages. Exactly one database 

language will have the flag isalternative = true which means that it will be used as the 

fallback database language if a request does not pass the URL parameter language. 

In case of a versionable database, the existing change lists are returned as well. 

 

EXAMPLE FOR METHOD FILTER ITEM 

{ 
"kind": "METHODFILTER", 
"guid": "dd838074-ac29-11d4-85b8-00005a4053ff", 
"name": "Entire method", 
"description": "All method content is available." 
} 



REPOSITORY API TECHNICAL INTRODUCTION 

 

9 

 

EXAMPLE FOR DATABASE LANGUAGE ITEM 

{ 
"kind": "DBLANGUAGE", 
"language": "en_US", 
"isalternative": true 
} 

EXAMPLE FOR CHANGELIST ITEM 

{ 
"kind": "CHANGELIST", 
"changelist_number": 1, 
"user": "internal", 
"description": "initial revision after restore from basic archive file.", 
"submit_time": "2015-04-07T16:11:13Z" 
} 



REPOSITORY API TECHNICAL INTRODUCTION 

 

10 

 

6 API Docs ComparePair 

Note: The ComparePair feature is not part of the ARIS Repository REST API but is related to 

CONNECT Portal Functionality. It is included here for convenience. 

6.1 Get a list of database comparison pairs 

GET 

/publishing/databaseComparePair 

http://<servername:port>/abs/publishing/databaseComparePair 

 

This call returns a list of all available database pairs. 

EXAMPLE 

[ 
 { 
 "name": "A",  
 "user": null,  
 "description": null,  
 "sourceDatabaseName": "test_mv",  
 "sourceVersion": 1,  
 "targetDatabaseName": "test_mv",  
 "targetVersion": 2,  
 "enabled": true  
 } 
] 
 
 

GET 

/api/databaseComparePair(dbPairName) 

http://<servername:port>/abs/publishing/databaseComparePair/A 

 

Parameter 
dbPairName = A // Name of the database pair 
 

Gets a database pair for comparison by its name. 

This call returns a single database pair if one is found.  

The information detail is exactly the same as in get databaseComparePair. 

No new information is provided. 

 



REPOSITORY API TECHNICAL INTRODUCTION 

 

11 

 

EXAMPLE 

{ 
"kind": "RESULT", 
"request": "abs#getDatabaseComparePair",  
"status": "OK",  
"item_count": 1,  
"items": [ {  
 "kind": "DATABASE",  
 "name": "A",  
 "user": null,  
 "description": null,  
 "sourceName": "test_mv",  
 "sourceVersion": 1,  
 "targetName": "test_mv",  
 "targetVersion": 2,  
 "enabled": false  
} ] 
} 

 



REPOSITORY API TECHNICAL INTRODUCTION 

 

12 

 

6.2 Create a database comparison pair 

POST 

/api/databaseComparePair 

http://<servername:port>/databaseComparePair?name=A&user=test&description=test%20de

scription&sourceDatabaseName=United%20Motor%20Group&sourceVersion=1&targetName=

United%20Motor%20Group&targetVersion=2 

 

Parameter 
databasePairName   = A  //Name of the database pair 
user    = ""  //Name of the responsible user 
description   = ""  //Description of the pair 
sourceDatabaseName  = Test_mv //Name of the source database 
sourceVersion   = 1  //Version of the source database 
targetDatabaseName  = Test_mv //Name of the target database 
targetVersion   = 2  //Version of the target database 
enabled   = true  //Enable the database pair 
 

This call returns a list of a newly created database pair.  

For each pair a name, a short description, and the responsible user can be saved. 

The unique name of the database pair is required. 

The source database must be unique. The target database can be referenced in several pairs. 

For source and target, the database and version must exist, but the databases do not need to 

be published. 

The versions do not have to be different either, but if the source and the target database are 

the same, they can be exchanged. 

Database pairs with the same name or the same source database overwrite older ones. 

EXAMPLE 

{ 
"kind": "RESULT", 
"request": "abs#createDatabaseComparePair",  
"status": "OK",  
"item_count": 1,  
"items": [ {  
 "kind": "DATABASE",  
 "name": "A",  
 "user": "",  
 "description": "",  
 "sourceName": "test_mv",  
 "sourceVersion": 1,  
 "targetName": "test_mv",  



REPOSITORY API TECHNICAL INTRODUCTION 

 

13 

 

 "targetVersion": 2,  
 "enabled": true  
} ] 
} 

 



REPOSITORY API TECHNICAL INTRODUCTION 

 

14 

 

6.3 Toggle the enable state of a database comparison pair 

PATCH 

http://<servername:port>//abs/api/databaseComparePair/A 

 

Parameter 
dbPairName = A //Name of the database pair 
 

This call returns the updated database pair.  

This method toggles the enabled value of the database pair and is a simple way to change the 

state in the background. 

 

EXAMPLE 

{ 
"kind": "RESULT", 
"request": "abs#createDatabaseComparePair",  
"status": "OK",  
"item_count": 1,  
"items": [ {  
 "kind": "DATABASE",  
 "name": "A",  
 "user": null,  
 "description": null,  
 "sourceName": "test_mv",  
 "sourceVersion": 1,  
 "targetName": "test_mv",  
 "targetVersion": 2,  
 "enabled": true  
} ] 
} 

 



REPOSITORY API TECHNICAL INTRODUCTION 

 

15 

 

6.4 Delete a database comparison pair 

DELETE 

/api/databaseComparePair 

http://<servername:port>/abs/api/databaseComparePair 

 

Parameter 
sourceDatabaseName = test_mv //Name of the source database 
sourceVersion  = 1  //Version of the source database 
targetDatabaseName = test_mv //Name of the target database 
targetVersion  = 2  //Version of the target database 

 

http://<servername:port>/abs/api/databaseComparePair?sourceDatabaseName=test_mv&s

ourceVersion=1&targetName=test_mv&targetVersion=2 

 

EXAMPLE 

{ 
"kind": "RESULT", 
"request": "abs#deleteDatabaseComparePair",  
"status": "OK",  
"item_count": 0,  
"items": [] 
} 

This call returns null if everything is correct. Otherwise, all errors will be returned. The given 

parameter searches and deletes all pairs. If the databases are the same, source and target are 

exchangeable. All found database pairs are deleted even if it should just be one in the first 

place. 

 

 

DELETE 

/api/databaseComparePair/{dbPairName} 

http://<servername:port>/abs/publishing/databaseComparePair/A 

 

Parameter 
databasePairName = A //Name of the database pair 

 



REPOSITORY API TECHNICAL INTRODUCTION 

 

16 

 

Deletes a database pair with the pair name. Only one database name is required for this call. 

This call returns null if everything is correct. Otherwise, all errors are returned. The given 

parameter searches and deletes all pairs. 

 

EXAMPLE 

{ 
"kind": "RESULT", 
"request": "abs#deleteDatabaseComparePair",  
"status": "OK",  
"item_count": 0,  
"items": [] 
} 



REPOSITORY API TECHNICAL INTRODUCTION 

 

17 

 

7 Get an item 

The ARIS API offers to retrieve groups, objects (definitions) and models. The desired item 

must be identified by its ARIS GUID or a full CONNECT item-id (for example, c.process.United 

Motor Group.CibrcP1SEdsnKQALzQzOTg.-1). 

Identifying via group path + name is unsupported as this is possibly ambiguous. 

EXAMPLE 

GET 

http://<servername:port>/abs/api/groups/United%20Motor%20Group/1191ae90-0
2f7-11dc-2729-000bcd0cce4e 

 

By default, only the name attribute (AT_NAME) is included in the response. If you need more 

attributes, the URL parameter attributes must be given. Possible values are 

 all: all non-empty attributes 

 a comma-separated list of attribute type numbers, API names or type-GUIDs (all of these 

can be arbitrarily mixed) 

Example: attributes = 1, AT_DESC, AT_AUTH // attribute name, description, author 

 

Remarks 
Connections are not supported. 

 

Note: It is also possible to retrieve HTTP portal links that can be directly used in the browser 

to access the item via the CONNECT portal. Add URL parameter withportallinks = true. 

 

PORTAL LINK EXAMPLES (FOR A MODEL) 

{ 
"kind": "LINK", 
"method": "GET", 
"href": "http://<servername:port>/#default/item/c.process.United Motor 
Group.CibrcP1SEdsnKQALzQzOTg.-1", 
"rel": "ITEM_MODEL" // CONNECT Item View 
}, 

 

{ 
"kind": "LINK", 
"method": "GET", 
"href": "http://<servername:port>/#default/repository/a.model.United Motor 
Group.CibrcP1SEdsnKQALzQzOTg.-1", 
"rel": "REPO_MODEL" // CONNECT Repository View 
}, 



REPOSITORY API TECHNICAL INTRODUCTION 

 

18 

 

 

{ 
"kind": "LINK", 
"method": "GET", 
"href": "http://<servername:port>/#default/thinclient/c.process.United 
Motor Group.CibrcP1SEdsnKQALzQzOTg.-1", 
"rel": "TC_MODEL" // CONNECT Designer View 
}, 

 

{ 
"kind": "LINK", 
"method": "GET", 
"href": "http:// 
<servername:port>/abs/downloadClient/aris_database.jsp?configuration=ARIS
&apps 
erver=myserver&database=United%20Motor%20Group&guid=0a26eb70-fd52-11db-27
29- 000bcd0cce4e&language=en_US&tenant=default", 
"rel": "DC_MODEL" // CONNECT Download client 
} 

 



REPOSITORY API TECHNICAL INTRODUCTION 

 

19 

 

8 Get group children 

A group usually contains children, that is, subgroups as well as models and objects. 

 

GET 

http://<servername:port>/abs/api/groups/United%20Motor%20Group/4a713de0-5
d02-11e3-0fda-fd81e986d7e2/children 

This call returns all subgroups of the group identified by the given GUID or CONNECT item-ID. 

If you additionally need the models and/or objects in the group, you can add the URL 

parameters withmodels=true or withobjects=true. 

 

 

GET 

http://<servername:port>/abs/api/groups/United%20Motor%20Group/4a713de0-5
d02-11e3-0fda-fd81e986d7e2/children?withmodels=true&withobjects=true 

 

Remark 
It also possible to retrieve an entire subtree by passing the URL parameter recursive=true. 

 

Note 
There is an absolute result size limit of 10,000 items (regardless of the page size you choose 

and how many paging requests are sent). 

If parameter withobjects=true and withmodels=false is used for retrieving subgroups and 

objects, the limit is 100,000. If a group contains more than 

 10,000 subgroups or 

 more than 100,000 groups and objects (withobjects=true and withmodels=false), 

you will not be able to retrieve them all. 

The maximum number of subgroups that can be recursively retrieved is 10,000. 

Depending on the ARIS license, other size limits may apply. 



REPOSITORY API TECHNICAL INTRODUCTION 

 

20 

 

9 Get content of a model 

The content of a model consists of occurrences (= model objects, model connections). They 

can be retrieved in a getModel call by passing the URL parameter withcontent=true. 

 

GET 

http://<servername:port>/abs/api/models/United%20Motor%20Group/88ba40a0-c
fb6-11e0-2556-5c260a398437?withcontent=true 

 

Remarks 
Model objects/model connections are a blend of data from the occurrence and definition 

levels. They do not contain any graphical information, such as dimension (width, height), and 

no coordinates of positions and connection paths. 

 

EXAMPLE FOR MODEL OBJECT ITEM 

{ 
"kind": "MODELOBJECT", 
"occid": "(7wLHfY8btgy:u:L+6PmFOGfzQQ4:x:L+33+c)", 
"guid": "d734eb6f-cf14-11e0-2556-5c260a398437", 
"link": { 
 "kind": "LINK", 
 "method": "GET", 
 "href": "http://<servername:port>/abs/api/objects/United Motor 
Group/d734eb6f-cf14-11e0-2556- 
5c260a398437?language=en_US&methodfilter=dd838074-ac29-11d4-85b8- 
00005a4053ff", 
 "rel": "OBJECT" 
 }, 
"type": 239, 
"typename": "Strategy", 
"apiname":"OT_STAT", 
"symbol": 1627, 
"symbolname": "Tactic", 
symbol_apiname": "ST_TACTIC", 
"attributes": [ 
 { 
 "kind": "ATTRIBUTE", 
 "id": "6S4A4i43Hh0:p:L=1=1033:1:s", 
 "typename": "Name", 
 "type": 1, 
 "apiname": "AT_NAME", 
 "language": "en_US", 
 "value": "Reduce operational costs in Supply Chain" 
 } 
     ] 
 } 



REPOSITORY API TECHNICAL INTRODUCTION 

 

21 

 

EXAMPLE FOR MODEL CONNECTION ITEM 

{ 
"kind": "MODELCONNECTION", 
"occid": "(7wLHfY8btgy:u:L+-6xMo0A_0oEz:y:L+34+c)", 
"type": 67, 
"typename": "encompasses", 
"apiname": "CT_SUBS_1", 
"source_guid": "c7ca78b0-abcf-11e0-7ee8-5c260a398437", 
"target_guid": "289b0560-ac64-11e0-7ee8-5c260a398437", 
"source_link": { 
"kind": "LINK", 
"method": "GET", 
"href": "http://<servername:port>/abs/api/objects/United Motor 
Group/c7ca78b0- 
abcf-11e0-7ee8-5c260a398437?language=en_US&methodfilter=dd838074-ac29-11d
4- 85b8-00005a4053ff", 
 "rel": "OBJECT" 
}, 
"target_link": { 
 "kind": "LINK", 
 "method": "GET", 
 "href": "http://<servername:port>/abs/api/objects/United Motor 
Group/289b0560-ac64-11e0-7ee8- 
5c260a398437?language=en_US&methodfilter=dd838074-ac29-11d4-85b8- 
00005a4053ff", 
 "rel": "OBJECT" 
 }, 
"source_occid": "(7wLHfY8btgy:u:L+-7cJgUsuG4Td:x:L+33+c)", 
"target_occid": "(7wLHfY8btgy:u:L+-2apRUFiN0WT:x:L+33+c)" 
} 



REPOSITORY API TECHNICAL INTRODUCTION 

 

22 

 

10 Create an item 

The API offers support for creating groups and objects. For objects, groups and models, it is 

possible to create attributes (or more correctly formulated in ARIS terminology: it is possible 

to maintain attributes with a value). You can add multiple attributes in the same call. For all 

added attributes, the same database language will be used (from URL parameter language). 

Furthermore, it is possible to create an assignment relationship between an existing object 

and an existing model. 

 

Note: 

 The creation of models is not supported. 

 For already existing objects, groups, and models, it is possible to add new attributes. 

(page 28) 

 

EXAMPLE 

Create a new group with name "My Subgroup" in the main group (GUID = 

4a713de0-5d02-11e3-0fda-fd81e986d7e2)  

 

POST 

http://<servername:port>/abs/api/groups/United%20Motor%20Group?language=e
n&parent=4a713de0-5d02-11e3-0fda-fd81e986d7e2 

 

Request body: 

{ 
"kind": "GROUP", 
"attributes": [ 
 { 
 "kind": "ATTRIBUTE", 
 "type": "AT_NAME", 
 "value": "My Subgroup" 
 } 
 ] 
} 

 

EXAMPLE 

Create a new object of type 43 (OT_ORG_UNIT) with two attributes (AT_NAME and 

AT_DESC). Database language = English; parent group = 

4a713de0-5d02-11e3-0fda-fd81e986d7e2 (= main group) 

 



REPOSITORY API TECHNICAL INTRODUCTION 

 

23 

 

POST 

http://<servername:port>/abs/api/objects/United%20Motor%20Group?language=
en&parent=4a713de0-5d02-11e3-0fda-fd81e986d7e2 

 

Request body: 

{ 
"kind": "OBJECT", 
"type": 43, 
"attributes": [ 
 { 
 "kind": "ATTRIBUTE", 
 "type": "AT_NAME", 
 "value": "My first OrgUnit " 
 }, 
 { 
 "kind": "ATTRIBUTE", 
 "type": "AT_DESC", 
 "value": "This is the long description" 
 } 
 ] 
} 
 

 

Remarks 
The kind entries in the request body are redundant and not required. 

There is a slight difference in the behavior whether creating an object or a group with a 

duplicate name. 

 If you create a new group with the name X and there is already a group X in the desired 

parent group, then the new group will automatically be renamed to X(1). 

 If you create a new object with name X and there is already an object X in the desired 

parent group, then the new object has the name X, so there are two objects with the 

name X. 



REPOSITORY API TECHNICAL INTRODUCTION 

 

24 

 

11 Create model content 

Models cannot be created via the ARIS Repository API, but you can create model objects and 

model connections. When creating a new connection, it is possible to use objects that are 

created in the same request. As they do not have an ID yet, you must define a temporary 

occ-id (starting with #) and use these temporary occ-ids when defining source and target of 

the new connection.  

EXAMPLE 

PUT 

http://<servername:port>/abs/api/models/United%20Motor%20Group/42ad5380-3
d0e-11e5-6479-22000b630ca4 

 
Request body: 

{ 
"modelobjects": [ 
 { 
 "kind": "MODELOBJECT", 
 "occid": "#1", 
 "type" : 22, 
 "symbol": 335, 
 "attributes": [ 
  { 
  "kind": "ATTRIBUTE", 
  "type": 1, 
  "value": "new function via model update" 
  } 
  ] 
 }, 
 { 
 "kind": "MODELOBJECT", 
 "occid": "#2", 
 "type" : 18, 
 "symbol": 1, 
 "attributes": [ 
  { 
  "kind": "ATTRIBUTE", 
  "type": 1, 
  "value": "new event via model update" 
  } 
  ] 
 } 
 ], 
"modelconnections": [ 
 { 
 "kind": "MODELCONNECTION", 
 "type": 44, 
 "source_occid": "#1", 
 "target_occid": "#2" 
 } 



REPOSITORY API TECHNICAL INTRODUCTION 

 

25 

 

 ] 
} 

Remarks 
 When creating objects as shown above, a new definition object is created. If you want to 

reuse an already existing object, provide the GUID, for example, 

 { 
 "kind": "MODELOBJECT", 
 "occid": "#1", 
 "guid" : "4686bd20-3d0e-11e5-6479-22000b630ca4" 
 "type" : 22, 
 "symbol": 335 
 } 

 

 As model objects and model connections are created without any positional information, 

they will be located one above the other in the upper left corner of the model. It is 

possible to enforce an automatic layout of the model when it is opened for the first time 

in ARIS Architect/Designer by passing the URL parameter layoutonopen=true. 

 

Note: A user with ARIS API Mobile Access license can only create one model object or one 

model connection in a single request. 



REPOSITORY API TECHNICAL INTRODUCTION 

 

26 

 

12 Delete model content 

Model objects or model connections can be deleted from a model via their occ-ids. If you 

delete a model object, then all affected model connections are deleted automatically (no need 

to include them in the request). 

 

DELETE 

http://<servername:port>/abs/api/models/United%20Motor%20Group/1672a301-3
d14- 
11e5-6479-22000b630ca4/objects?occid=(-7O3yxAzzRgN%3Au%3AL%2B-7RaSdNnA6hr
%3Ax%3AL%2B33%2Bc) 

 

Remarks 
 Occ-IDs often contain special characters. It is important to ensure properly urlencoded 

values. 

 In the request path, make sure to have /objects or /connections at the end, otherwise 

the model itself will be deleted! 

 

Note: A user with ARIS API Mobile Access license can only delete one model object or one 

model connection in a single request (automatically deleted model connections are not 

counted). 



REPOSITORY API TECHNICAL INTRODUCTION 

 

27 

 

13 Move an item 

It is possible to move an existing model, group, or object from its current location (i.e. parent 

group) to some other group. Exception: the main group of a database cannot be moved. 

The move can be done by an update operation (PUT) and passing the URL parameter 

PARENT, along with the GUID of the desired new parent group.  

Note: The creation of models is not supported. 

 

EXAMPLE 

Move the model identified by its GUID 31c0dc4d-467f-11d4-bb1d-00105a0ef4f4 to the group 

with GUID 5ba90461-7ec4-11e3-01db-b51dcc951f78. 

 

PUT 

http://<servername:port>/abs/api/models/United%20Motor%20Group/ 

31c0dc4d-467f-11d4-bb1d-00105a0ef4f4?parent= 5ba90461-7ec4-11e3-01db-b51dcc951f78  

 

Request body: 

{}     // or any desired additional update-data e.g. for attributes 

 



REPOSITORY API TECHNICAL INTRODUCTION 

 

28 

 

14 Attributes 

Attributes are no top-level items and are tightly bound to their parent item (database, object, 

group, model). You can retrieve attributes only along with its parent item to which they 

belong. 

Attributes can be identified by an integer type number (for example, 1), the API name (for 

example, AT_NAME) or a type GUID. These type identifiers can be freely mixed in the same 

request and even in the same parameter, for example, in the URL parameter attributes. 

Attributes are maintained in the database language as given by the URL parameter language. 

If no such parameter is given, the default language of the current database is used. 

 

Remarks 
 Currently, only a limited subset of attribute types is supported, especially integer, float, 

text, timestamp, time, value attributes, binary. 

 Binary data must be sent as BASE64 encoded string. 

 

 



REPOSITORY API TECHNICAL INTRODUCTION 

 

29 

 

14.1 Retrieval 

You cannot retrieve an attribute on its own. You must retrieve the parent item (for example, 

an object or a model to which the attribute belongs) by using an appropriate get-request and 

specifying the attribute type(s) (URL parameter attributes) you want to have in the response. 

If no attribute type is given, the value of the Name attribute (AT_NAME) is returned by default 

(but not in case of a database). 

 

EXAMPLES 

Get the model with GUID bf2a9d60-7cb8-11dc-2729-000bcd0cce4e with all maintained 

attributes. 

GET 

http://<servername:port>/abs/api/models/United%20Motor%20Group/bf2a9d60-7
cb8-11dc-2729-000bcd0cce4e?language=en&attributes=all  

 

Get the model with the attributes Name (AT_NAME, type number 1), Description (AT_DESC), 

and Status (AT_STATE_1). Attributes can be specified by type numbers or API names/type 

GUIDs. These can be freely mixed in a comma-separated list. 

GET 

http://<servername:port>/abs/api/models/United%20Motor%20Group/bf2a9d60-7
cb8-11dc-2729-000bcd0cce4e?language=en&attributes=1,AT_DESC,AT_STATE_1 

 

Get the details of the database United Motor Group including all maintained attributes. 

GET 

http://<servername:port>/abs/api/databases/United%20Motor%20Group?languag
e=en&attributes=all 

 



REPOSITORY API TECHNICAL INTRODUCTION 

 

30 

 

14.2 Creation 

You can create an attribute for all items (except databases) together with its parent in the 

same request. 

EXAMPLE 

Create an object with the two attributes name and description. 

 

POST 

http://<servername:port>/abs/api/objects/United%20Motor%20Group?language=
en &parent=4a713de0-5d02-11e3-0fda-fd81e986d7e2 

 

Request body: 

{ 
"kind": "OBJECT", 
"type": 43, 
"attributes": 
 [ 
 { 
 "kind": "ATTRIBUTE", 
 "type": "AT_NAME", 
 "value": "I am an OrgUnit!" 
 }, 
 { 
 "kind": "ATTRIBUTE", 
 "type": 9, 
 "value": "This is the long description" 
 } 
 ] 
} 

 



REPOSITORY API TECHNICAL INTRODUCTION 

 

31 

 

14.3 Updating or creation for existing item 

If you want to add a new attribute to an already existing item or if you want to update the 

value of an existing attribute, you must do an update operation (PUT) on the parent item (not 

supported for a database item). 

EXAMPLE 

Update the name of an existing object and add the author attribute. 

 

PUT 

http://<servername:port>/abs/api/objects/United%20Motor%20Group/b7e90c56-
00cf-11e2-21d1-5c260a628455?language=en 

 

Request body: 

{ 
"attributes": [ 
 { 
 "kind": "ATTRIBUTE", 
 "type": 1, 
 "value": "Just renamed it" 
 }, 
 { 
 "kind": "ATTRIBUTE", 
 "type": "AT_AUTH", 
 "value": "I am the author" 
 } 
 ] 
} 

 

 



REPOSITORY API TECHNICAL INTRODUCTION 

 

32 

 

14.4 Deleting an attribute 

Deleting an attribute cannot be done via an update operation on the parent item. Instead, the 

dedicated DELETE operation must be used (not supported for a database item). The type 

numbers of the attributes to be deleted must be passed via the URL parameter 

typenumbers. 

 

DELETE 

http://<servername:port>/abs/api/objects/United%20Motor%20Group/b7e90c56-
00cf- 11e2-21d1-5c260a628455/attributes?language=en&typenumbers=AT_DESC, 
AT_AUTH 

 

Remarks 
 Do not forget to have /attributes at the end of the URL path, otherwise you do a DELETE 

on the parent object and it is gone! 

 The result of a successful delete operation is simply empty with STATUS = OK, for 

example, 

 { 
 "kind": "RESULT", 
 "request": "abs#deleteObjectAttributes", 
 "status": "OK", 
 "item_count": 0, 
 "items": [] 
 } 

 

Note: Only one attribute can be deleted in a single request for users with an ARIS API Mobile 

Access license. 

 



REPOSITORY API TECHNICAL INTRODUCTION 

 

33 

 

14.5 Styled values for text attributes 

In ARIS, text attributes (for example, AT_DESC) can also have a styled value. If you want to 

retrieve text attributes with their styled value, you must set the URL parameter 

withstyledtext = true. If the text attribute has got a valid styled value, it will be returned in 

addition to the standard value field. 

 

A typical response would be as follows: 

 { 
 "kind": "ATTRIBUTE", 
 "id": "2Nc1glOg_LN:p:L=9=1033:1:s", 
 "typename": "Description/Definition", 
  "type": 9, 
 "apiname": "AT_DESC", 
 "language": "en_US", 
 
 "styled_value": 
  "<html><body> 
  <p style=\"margin-left:0;margin-bottom:0; 
   margin-top:0\"><b>my&#32;updated</b>&#160;description 
  </p> 
 </body></html>", 
 
 "value": "my updated description" 
 } 

 

The styled value is HTML starting with tags <html><body>. 

It is also possible to set a styled value when creating or updating an attribute. Simply pass 

"styled_value" with a valid HTML string. 

 

Remarks 
 The URL parameter withstyledtext is not required for write operations (POST, PUT). 

 If a write operation (POST, PUT) contains both value and styled_value, then  

styled_value has precedence and value is basically ignored. According to standard ARIS 

behavior, value will then contain a plain-text representation of the HTML from 

styled_value. 

 Only a basic set of HTML is supported: <b>, <i>, <u>, <strike>, <ul>, <ol>, <li>, <br>, <p>, 

<span>, <div>. 

 For styling information (margin, color, font-family, size), use an inline style attribute, for 

example, 



REPOSITORY API TECHNICAL INTRODUCTION 

 

34 

 

<span style=\"font-size:48pt;\"> 
    <span style=\"font-family:Kokila;\">Hello World</span> 
</span> 

 Unsupported HTML tags are silently ignored (only their text content will be considered). 

 Make sure to correctly escape JSON special characters, for example, \n must be escaped 

as \\n and " as \". 

 If the HTML in styled_value does not contain any real formatting, a plain text value is set, 

for example, 

 <html><body><p> My name is Bond. James Bond.</p></body></html> 

 Result 
 "value"  : "My name is Bond. James Bond." 

 "styled_value" : null 



REPOSITORY API TECHNICAL INTRODUCTION 

 

35 

 

15 Assignments 

An assignment is simply a link between an existing object and an existing model. With the 

ARIS Repository API, you can create and delete assignments. It is not possible to retrieve a 

specific assignment; assignments are always included automatically in the response when 

you retrieve an object. 

 

EXAMPLE 

Create an assignment 

 

POST 

http://<servername:port>/abs/api/objects/United Motor 
Group/6aa1b167-fac0-11de-55c7-001a6b3c820f/assignment/a39aefb0-fa1c-11db-
2729-000bcd0cce4e 

objectGUID (source of assignment) 

modelGUID (target of assignment) 

 

 

EXAMPLE 

Delete an assignment 

 

DELETE 

http://<servername:port>/abs/api/objects/United Motor 
Group/6aa1b167-fac0-11de-55c7-001a6b3c820f/assignment/a39aefb0-fa1c-11db-
2729-000bcd0cce4e 



REPOSITORY API TECHNICAL INTRODUCTION 

 

36 

 

16 Model graphic 

The ARIS API does not provide positional information when retrieving a model with its 

contents. But it is possible to get a model graphic. It has format PNG (Portable Network 

Graphics) and is returned as a BASE64-encoded string. There are two optional URL 

parameters maxwidth and maxheight that allow you to control the size (in image pixels) of 

the generated graphic. 

 

EXAMPLE 

GET 

http://<servername:port>/abs/api/models/United%20Motor%20Group/0a26eb70-f
d52- 11db-2729-000bcd0cce4e/graphic 



REPOSITORY API TECHNICAL INTRODUCTION 

 

37 

 

17 Finding items in the database 

It is possible to search for items according to several criteria that are AND-linked, that is, they 

reduce the number of matching result items. You must pass the URL parameter kind to 

declare what to search (model or object). In addition, you can define the desired type (= 

comma-separated list of object type numbers or model type numbers; API names or type 

GUIDs are also supported) and optionally a filter criterion with respect to an attribute. 

 

EXAMPLE 

Find all models of type 13 (MT_EEPC), whose names start with Sale (written with small or 

large s). 

 

GET 

http://<servername:port>/abs/api/databases/United%20Motor%20Group/find?ki
nd=MODEL&typefilter=13&language=en&attrfilter=AT_NAME=Sale 

 

Remarks 
 Available item kinds: MODEL, OBJECT, GROUP 

 For all attributes: + (isMaintained), - (isNotMaintained) 

 For numbers, the usual operators are available: =, !=, >, <, >=, <= 

 For Boolean:  = and  != 

 For text attributes:  =  

 The parameter attrfilter may contain fully parenthesized expressions (parenthesis= { }), 

combined with operators AND, OR. 

 Date values must be given in UTC in the RFC 3339 Internet format YYYY-MM-DD, for 

example, 2021-10-15 

 Timestamp values must be given in UTC in the RFC 3339 Internet Zulu time format 

YYYY-MM- DD'T'HH:MM:SS'Z', for example, 2021-10-15T08:22:55Z 

 

EXAMPLES FOR TIMESTAMP QUERIES 

 

All objects changed in a given period of time 

GET 

http://<servername:port>/abs/api/databases/United%20Motor%20Group/find?ki
nd=OBJECT&language=en_US&attributes=all&attrfilter={AT_LAST_CHNG_2 >= 
2021-10-15T00:00:00Z} AND {AT_LAST_CHNG_2 <= 2021-10-15T09:00:00Z} 



REPOSITORY API TECHNICAL INTRODUCTION 

 

38 

 

 

All objects created in a given period of time 

GET 

http://<servername:port>/abs/api/databases/United%20Motor%20Group/find?ki
nd=OBJECT&language=en_US&attributes=all&attrfilter={AT_CREAT_TIME_STMP    
>= 2021-10-15T00:00:00Z} AND {AT_CREAT_TIME_STMP <= 2021-10-15T09:00:00Z} 

 
 

SEARCHING FOR TEXT: EXAMPLES FOR THE VALUE OF ATTRFILTER 

AT_NAME = Jones 
9  = Human Resources // (9 = AT_DESC) 
AT_AUTH -    // (AT_AUTH not maintained) 
{AT_NAME = Jones} AND {AT_DESC = Human Resources} 
{{AT_NAME = Jones} OR {AT_DESC = Human Resources}} AND {AT_AUTH -} 

 

 Important: in case of a parenthesized expression, the search value must not contain 

{ or }. If the search value must contain a curly parenthesis, pass an escaped character, for 

example, \} when searching for text attributes. 

 The normal search behavior is similar to that of standard search engines: Contents of text 

attributes are token-based, that is, typical separators, such as blanks or dashes (-), are 

ignored. If the text attribute contains tokens from the search value (regardless of 

order/position), this is considered a match. 

 

Example: Search expression AT_NAME = holder certificate 

will find Holder Certificate and certificate holder and the certificate holder. 

 

 URL parameter matchcase: if true, searching will be case-sensitive and order of tokens is 

relevant 

 URL parameter exactsearch: if true, only exact matches are returned; special characters 

and notably the asterisk ( * ) are interpreted as simple character; in addition, the order of 

the tokens is important. 

 

Example: Search expression AT_NAME = holder certificate 

will find Holder Certificate but not certificate holder and not The Holder Certificate. 

 

 Special search patterns for text (parameter exactsearch must be false): 

 A* returns all strings that start with A (A must be a string of length >=2, the first two 

characters must be letters or digits). 



REPOSITORY API TECHNICAL INTRODUCTION 

 

39 

 

 A*B returns all strings that start with A (A must be a string of length >=2, the first two 

characters must be letters or digits) and end with B. 

 

IMPORTANT NOTE 

The search functionality described above is not intended to load large amounts of data from 

an ARIS repository. Therefore, there is a result size limit (typically 100,000 items for 

kind=OBJECT, otherwise 10,000; both limits are also depending on the user license). This limit 

is absolute, that is, it is independent on the page size you choose and how many paging 

requests are sent. 

 

Example: If a search query is sent to get all models of EPC type and the database contains 

15,000 such models, then only the first 10,000 hits can be retrieved (for example, by sending 

50 paging requests with page size 100). 

In general, a search request that leads to several thousand hits should always be refined with 

more concrete search criteria. 



REPOSITORY API TECHNICAL INTRODUCTION 

 

40 

 

18 Paging 

Typically, when using the database-find operation from the previous chapter, many items will 

be found and returned to the caller. A default page size of 100 is in effect. A different page 

size can be indicated with the URL parameter pagesize. The maximum allowed page size 

depends on the user's license and server settings. 

If there are more items to be returned than the page size allows, the response will contain an 

entry next_pagetoken. This indicates to the client that there is more data to load. 

EXAMPLE 

Request 
http://<servername:port>/abs/api/databases/United%20Motor%20Group/find?ki
nd=MODEL&language=en&attrfilter=AT_NAME&wildcards=true&attrcriterion==S* 

 

Response 
{ 
"kind": "RESULT", 
"request": "abs#find", 
"status": "OK", 
"item_count": "100", 
"next_pagetoken": "1:100:guid", 
"items": [ 
… 100 items here 
] 
} 

 

In order to get the next page of results, the client must send the same request again and 

add the page token, for example, as query parameter. 

 

GET 

http://<servername:port>/abs/api/databases/United%20Motor%20Group/find?ki
nd=MODEL&language=en&attrfilter=AT_NAME&wildcards=true&attrcriterion==S*&
pagetoken=1:100:guid 

 

Response 
{ 
"kind": "RESULT", 
"request": "abs#find", 
"status": "OK", 
"item_count": "35", 
"items": [ 
… remaining 35 items here 
] 
} 



REPOSITORY API TECHNICAL INTRODUCTION 

 

41 

 

In the above example, the second response contains no entry next_pagetoken --> the client 

knows that there are no more items to load. 

 

Notes 
 The maximum allowed page size is 10,000 for object items and 1,000 for all other items 

like models, groups, etc. If a page size is given that is too large, it will be silently corrected 

to the allowed maximum. 

 Regardless of paging, there is an absolute size limit for the results depending on the 

user license, typically 100,000 for object items and 10,000 for all other items like models, 

groups, etc. For example, if you use page size 10,000 for getting object items or 1,000 for 

getting models, at most 10 paging requests will return data. If the total result set is larger, 

it is not possible to retrieve the remainder. 



REPOSITORY API TECHNICAL INTRODUCTION 

 

42 

 

19 Ordering the result 

If more than one item is returned by a request (for example, database-find), the items are 

ordered by their GUID in ascending order. Ordering by GUID itself is normally useful but this 

ensures a stable result, especially with respect to paging. 

 

You can pass the URL parameter orderby in order to indicate a different sorting, for example, 

 …&orderby = name (order by attribute AT_NAME, ascending) 
 …&orderby = -name (order by attribute AT_NAME, descending) 

 

Other possible values: 

 modified (ascending) 

 -modified (descending) 

 path (group path starting at main group) 



REPOSITORY API TECHNICAL INTRODUCTION 

 

43 

 

20 Generic queries 

Generic queries attempt to provide a kind of graph-based retrieval of items. Syntax and 

functionality are similar to the XML-based transformation configuration used in ARIS. 

Familiarity with these transformation configurations might therefore be helpful in 

understanding the use of the generic queries. 

The general idea is as follows: 

 A search context must be specified with which the query should start. The search 

context can be a list of specific objects or models (defined as a comma-separated list of 

GUIDs, for example, "start_guids" = "id1, id2, id3") or a list of object or model type 

numbers ("start_types" = "6, 43, 78"). 

 If the search context is made up of objects, the endpoint must be: /abs/api/objects/<db 

name>/query 

 If the search context is made up of models, the endpoint must be: /abs/api/models/<db 

name>/query 

 The search context must consist of GUIDs or type numbers representing either objects or 

models. Mixing objects and models is not allowed. 

 Filter items that should be returned as result must be marked as TARGET. 

 Non-TARGET filter items can be marked as FILTER for clarity (not required). 

 Starting from the items defined by the search context, it is possible to find and retrieve 

objects or models that can be reached from the start items through a sequence of filter 

items. Each sequence is a nested path of items. Only one item of the TARGET function is 

allowed within a single path. 

 Available properties for filter items: 

type  MODEL, OBJECT, CONNECTION, ASSIGNMENT, OCCURRENCE, 

  CONNECTIONOCCURRENCE 

function FILTER, TARGET 

direction IN, OUT (only allowed for items with type CONNECTION) 

typenum comma-separated list of types 

 

 Type information (for the item property "typenum") can be numbers, API names, or 

type-GUIDs. It is usually most efficient to use type numbers (integers). Use API names 

(for example, OT_FUNC) if you want to make the JSON more human readable, or a 

type-GUID in case of user-defined types. 



REPOSITORY API TECHNICAL INTRODUCTION 

 

44 

 

 

 

Query with two parallel filter paths: the upper path returns all objects of type 6 or 43 to which 

the start object has an incoming connection; the lower path returns all objects of type 6 or 43 

to which the start object has an outgoing connection. 

 

Sample request body: 

{ 
  "start_guids" : "ad687d6e-f19c-11db-2729-000bcd0cce4e", 
  "items" : [ 
    { "type" : "CONNECTION", 
      "direction" : "IN", 
   "items" : [ 
        { "type" : "OBJECT", 
          "typenum" : "6,43", 
          "function" : "TARGET" 
        } 
      ] 
    }, 
    { "type" : "CONNECTION", 
      "direction" : "OUT", 
   "items" : [ 
        { "type" : "OBJECT", 
          "typenum" : "6,43", 
          "function" : "TARGET" 
        } 
      ] 
    } 
  ] 
} 



REPOSITORY API TECHNICAL INTRODUCTION 

 

45 

 

 
 

Sample response (slightly shortened) 

 

 

 

Remarks 
 Not all possible combinations of filter items lead to useful results. Only the use-case 

examples listed below are officially supported. Other combinations might not work. 

 Although a generic query is of read-only nature, it must be sent as a POST request 

because the query definition must be provided in the request body. 

 The request body must contain a JSON structure with the query, which is a nested list of 

filter items. 

 Start items appear in the result as top-level entries (that is, the item_count in the 

response reflects the number of these top-level items, not the number of all objects 

found that match the filter criteria). 

 The descendants of each top-level node represent the TARGET objects that meet the 

filter criteria; this list is empty if there was no match for the respective top-level item (= 

start item). 



REPOSITORY API TECHNICAL INTRODUCTION 

 

46 

 

20.1 Use case: Get connected objects (def level) 

If you want to determine all objects of a type that have a connection to a given object (that is, 

the start object) on definition level, you can use a CONNECTION filter item. Please note that 

you must specify the respective connection direction IN or OUT (as seen from the start 

object). If you do not care about the direction, you must define two filter paths, one for IN, the 

other for OUT, as shown below. The objects of interest to be returned must be specified by at 

least one type information and marked as TARGET. 

 

EXAMPLE 

POST 

http://<servername:port>/abs/api/objects/United%20Motor%20Group/query 

 

Request body: 

{ 
  "start_guids" : "ad687d6e-f19c-11db-2729-000bcd0cce4e", 
 
  "items" : [ 
    { "type" : "CONNECTION", 
      "direction" : "IN", 
   "items" : [ 
        { "type" : "OBJECT", 
          "typenum" : "6,43", 
          "function" : "TARGET" 
        } 
      ] 
    }, 
 
    { "type" : "CONNECTION", 
      "direction" : "OUT", 
   "items" : [ 
        { "type" : "OBJECT", 
          "typenum" : "6,43", 
          "function" : "TARGET" 
        } 
      ] 
    } 
  ] 
} 

20.2 Use case: Get connected objects (occ level) 

Queries usually operate on definition level. If you want to retrieve data based on filtering in 

terms of occurrences, you can proceed as in the following example. Use filter items of type 

OCCURRENCE and CONNECTIONOCCURRENCE to indicate the jump from the definition level 



REPOSITORY API TECHNICAL INTRODUCTION 

 

47 

 

to the occurrence level. Within the CONNECTIONOCCURRENCE item, define the desired 

connection and target object. 

 

EXAMPLE 

POST 

http://<servername:port>/abs/api/objects/United%20Motor%20Group/query 

 

Request body: 

{ 
   "start_guids":"ad687d6e-f19c-11db-2729-000bcd0cce4e", 
   "items":[ 
      { 
         "type":"OCCURRENCE", 
         "items":[ 
            { 
               "type":"CONNECTIONOCCURRENCE", 
               "items":[ 
                  { 
                     "type":"CONNECTION", 
                     "direction":"IN" 
                  }, 
                  { 
                     "type":"OCCURRENCE", 
                     "items":[ 
                        { 
                           "type":"OBJECT", 
                           "typenum":"6,43", 
                           "function":"TARGET" 
                        } 
                     ] 
                  } 
               ] 
            } 
         ] 
      } 
   ] 
} 

 

The above query explicitly requires that there is a connection between the start object and 

the target object. Sometimes it may be sufficient for your needs that there is a connection on 

definition level, but you want the target object to have an occurrence, that is, that the target 

is used in a model. This can be formulated as shown in the following example. Note that the 

OCCURRENCE item must have a typenum property with the type of the symbol used for the 

object occurrence. 

 



REPOSITORY API TECHNICAL INTRODUCTION 

 

48 

 

EXAMPLE 

POST 

http://<servername:port>/abs/api/objects/United%20Motor%20Group/query 

 

Request body: 

{ 
  "start_guids": "ad687d6e-f19c-11db-2729-000bcd0cce4e", 
  "items": [ 
    { 
      "type": "CONNECTION", 
      "direction": "IN", 
      "items": [ 
        { 
          "type": "OBJECT", 
          "typenum": "6", 
          "function": "TARGET", 
          "items": [ 
            { 
              "type": "OCCURRENCE", 
              "typenum" : "ST_APPL_SYS_TYPE", 
              "function": "FILTER" 
            } 
          ] 
        } 
      ] 
    } 
  ] 
} 
 

20.3 Use case: Get models with occurrences of an object 

A frequently needed question about an object is: In which models does it occur? This can be 

specified by using an OCCURRENCE filter item and a MODEL item as target. Please note that it 

is not possible to ask for all kinds of model: you must specify at least one model type as 

typenum. 

 

EXAMPLE 

POST 

http://<servername:port>/abs/api/objects/United%20Motor%20Group/query 

 

Request body: 



REPOSITORY API TECHNICAL INTRODUCTION 

 

49 

 

 
{   "start_guids":"6e285d97-b5a4-11e3-61a7-c1b8f41beb93", 
   "items":[ 
      { 
"start_guids" : "ad687d6e-f19c-11db-2729-000bcd0cce4e", 
  "items" : [ 
    { 
    "type" : "OCCURRENCE", 
    "items" : [ 
          { 
          "type" : "MODEL", 
          "typenum" : "13, 134", 
          "function" : "TARGET" 
          } 
       ] 
    } 
  ] 
} 

 

20.4 Use case: Get objects to which a model is assigned 

If you want to find out for a certain model for which objects it is used as an assignment, then 

you can use the ASSIGNMENT filter item and an OBJECT as target item. The start item is the 

GUID of the model you are interested in. 

 

Example 
POST 

http://<servername:port>/abs/api/models/United%20Motor%20Group/query 

 

Request body: 

 

{   "start_guids":"6e285d97-b5a4-11e3-61a7-c1b8f41beb93", 

   "items":[ 

      { 
         "type":"ASSIGNMENT", 
         "function":"FILTER", 
         "items":[ 
            { 
               "type":"OBJECT", 
               "typenum":"22", 
               "function":"TARGET" 
            } 
         ] 
      } 
   ] } 



REPOSITORY API TECHNICAL INTRODUCTION 

 

50 

 

 

20.5 Use Case: Get models with occurrence pattern 

It is possible to check for one or more given models whether a certain occurrence pattern is 

present, for example, whether there is a function object (type 22) with an incoming 

connection occurrence from an object of type 6 (application system type). The target objects 

are returned as descendants of the start models, that is, all top-level items in the response 

with an empty descendant list did not meet the pattern condition. 

 

Example 
POST 

http://<servername:port>/abs/api/models/United%20Motor%20Group/query 

 

Request body: 

 
{ 
"start_guids" : "45ad5550-f97c-11db-2729-000bcd0cce4e", 
"items" : [ 
 { 
 "type" : "OCCURRENCE", 
 "items" : [ 
  { 
  "type" : "OBJECT", 
  "typenum" : "22", 
  "function" : "FILTER" 
  }, 
  { 
  "type" : "CONNECTIONOCCURRENCE", 
  "items" : [ 
   { 
   "type" : "CONNECTION", 
   "function" : "FILTER", 
   "direction" : "IN", 
   "items" : [ 
    { 
    "type" : "OBJECT", 
    "typenum" : "6", 
    "function" : "TARGET" 
    } 
    ] 
   } 
  ]} 
 ]} 
   ]} 

 



REPOSITORY API TECHNICAL INTRODUCTION 

 

51 

 

20.6 Use Case: Get models with occurrence pattern 

If you want to get the assigned models of a specific object, it is recommended to use the 

getObject functionality (see Chapter Get an item (page 17)). 

However, if you have a list of object GUIDs, it might be helpful to determine the assigned 

models with a single query that uses an ASSIGNMENT filter item and a MODEL item as the 

target (specify all desired model types in the property typenum). 

 

Example 
POST 

http://<servername:port>/abs/api/objects/United%20Motor%20Group/query 

 

Request body: 

 
{ 
 "start_guids" : "1055825e-f979-11db-2729-000bcd0cce4e, 
10558255-f979-11db-2729-000bcd0cce4e", 
 
   "items": [ 
           { 
            "type":"ASSIGNMENT", 
            "items":[ 
                   { 
                    "type":"MODEL", 
                    "typenum":"14", 
                    "function":"TARGET" 
                   } 
             ] 
         } 
 ] 
} 
 

 



REPOSITORY API TECHNICAL INTRODUCTION 

 

52 

 

21 Legal information 
 

21.1 Documentation scope 

The information provided describes the settings and features as they were at the time of 

publishing. Since documentation and software are subject to different production cycles, the 

description of settings and features may differ from actual settings and features. Information 

about discrepancies is provided in the Release Notes that accompany the product. Please 

read the Release Notes and take the information into account when installing, setting up, and 

using the product. 

If you want to install technical and/or business system functions without using the 

consulting services provided by Software AG, you require extensive knowledge of the system 

to be installed, its intended purpose, the target systems, and their various dependencies. Due 

to the number of platforms and interdependent hardware and software configurations, we 

can describe only specific installations. It is not possible to document all settings and 

dependencies. 

When you combine various technologies, please observe the manufacturers' instructions, 

particularly announcements concerning releases on their Internet pages. We cannot 

guarantee proper functioning and installation of approved third-party systems and do not 

support them. Always follow the instructions provided in the installation manuals of the 

relevant manufacturers. If you experience difficulties, please contact the relevant 

manufacturer. 

If you need help installing third-party systems, contact your local Software AG sales 

organization. Please note that this type of manufacturer-specific or customer-specific 

customization is not covered by the standard Software AG software maintenance agreement 

and can be performed only on special request and agreement. 



REPOSITORY API TECHNICAL INTRODUCTION 

 

53 

 

21.2 Support 

If you have any questions on specific installations that you cannot perform yourself, contact 

your local Software AG sales organization 

(https://www.softwareag.com/corporate/company/global/offices/default.html). To get 

detailed information and support, use our Web sites. 

If you have a valid support contract, you can contact Global Support ARIS at: +800 

ARISHELP. If this number is not supported by your telephone provider, please refer to our 

Global Support Contact Directory. 

For issues regarding the product documentation, you can also send an e-mail to 

documentation@softwareag.com (mailto:documentation@softwareag.com). 

ARIS COMMUNITY 

Find information, expert articles, issue resolution, videos, and communication with other ARIS 

users. If you do not yet have an account, register at ARIS Community. 

PRODUCT DOCUMENTATION 

You can find product documentation also on our documentation Web site. 

In addition, you can also access the cloud product documentation. Navigate to the desired 

product and then, depending on your solution, go to Developer Center, User Center or 

Documentation. 

PRODUCT TRAINING 

You can find helpful product training material on our Learning Portal. 

TECH COMMUNITY 

You can collaborate with Software AG experts on our Tech Community Web site. From here 

you can, for example: 

 Browse through our vast knowledge base. 

 Ask questions and find answers in our discussion forums. 

 Get the latest Software AG news and announcements. 

 Explore our communities. 

 Go to our public GitHub and Docker repositories and discover additional Software AG 

resources. 

https://www.softwareag.com/corporate/company/global/offices/default.html
mailto:documentation@softwareag.com


REPOSITORY API TECHNICAL INTRODUCTION 

 

54 

 

PRODUCT SUPPORT 

Support for Software AG products is provided to licensed customers via our Empower Portal 

(https://empower.softwareag.com/). Many services on this portal require that you have an 

account. If you do not yet have one, you can request it. Once you have an account, you can, 

for example: 

 Download products, updates and fixes. 

 Add product feature requests. 

 Search the Knowledge Center for technical information and tips. 

 Subscribe to early warnings and critical alerts. 

 Open and update support incidents. 

 

 

 

 

 

 

 

 

 

 

 

  

https://empower.softwareag.com/

	Contents
	1 Introduction
	2 General principles
	3 Login/Logout
	3.1 Obtaining a UMC session token
	3.2 Releasing a UMC session token

	4 Get information about ARIS Method
	5 Get information on available databases
	6 API Docs ComparePair
	6.1 Get a list of database comparison pairs
	6.2 Create a database comparison pair
	6.3 Toggle the enable state of a database comparison pair
	6.4 Delete a database comparison pair

	7 Get an item
	8 Get group children
	9 Get content of a model
	10 Create an item
	11 Create model content
	12 Delete model content
	13 Move an item
	14 Attributes
	14.1 Retrieval
	14.2 Creation
	14.3 Updating or creation for existing item
	14.4 Deleting an attribute
	14.5 Styled values for text attributes

	15 Assignments
	16 Model graphic
	17 Finding items in the database
	18 Paging
	19 Ordering the result
	20 Generic queries
	20.1 Use case: Get connected objects (def level)
	20.2 Use case: Get connected objects (occ level)
	20.3 Use case: Get models with occurrences of an object
	20.4 Use case: Get objects to which a model is assigned
	20.5 Use Case: Get models with occurrence pattern
	20.6 Use Case: Get models with occurrence pattern

	21 Legal information
	21.1 Documentation scope
	21.2 Support


